Category Archives: Science in Action

Climate Scientists: The Faceless Demographic

Stand up for Science rally in Boston, February 2016
Stand up for Science rally in Boston, February 2017

Mentioning the phrase “climate change” in public conversation has become a verbal grenade, sending people scurrying for cover from the political shrapnel.  Climate scientists who engage with the public find themselves in a political war zone, barraged by hate mail, harassment and even death threats.

That vitriol makes climate scientists think twice before discussing their work outside the scientific community.  That’s a shame, because climate scientists need a stronger voice in public discussions.  A 2016 Pew survey found that two-thirds (67%) of U.S. adults believe climate scientists should play a major role in shaping climate policies. In contrast, just over half of Americans believe that the public and energy industry leaders should lead climate policymaking, and under half of Americans believe the same thing of politicians.

In short, Americans expect climate scientists to lead the public discourse on climate change.

Unfortunately, this kind of scientific leadership still isn’t the norm.  In fact, climate scientists seem like a faceless demographic. How many news articles have you read with the phrase, “climate scientists say…”, as if climate researchers are a unanimous collective of anonymous experts?  I’ve even seen articles that paraphrase the research without mentioning the people who authored it, as if the research conducted and published itself.

When an article refers to opinions of climate scientists without mentioning them by name, it strips climate scientists of their identities and personalities, intentionally or not, and makes it easier to dismiss or attack them.

That’s what I suspect, anyway.  It’s a hypothesis I can’t really test.  But, I can ask friends some general questions about climate news. In a definitely-totally-scientific Facebook poll, I asked whom friends trusted to provide accurate information, and whether they knew any climate scientists.  Fifteen people responded, which is too small a sample size to do any real number-crunching, but their answers were incredibly insightful.

Without further ado:

Let’s ask Facebook about climate change!

Continue reading Climate Scientists: The Faceless Demographic

Raindrops keep falling on my head

Tropical cloud-watching never gets old.  Near the equator, the warm ocean generates a ton of fuel for cloud growth.  Over the course of a few hours, you can watch a small cloud grow into a tower tens of thousands of feet tall.  If you look at satellite images of the Pacific, you’ll often see a band of these clouds just north of the Equator.  That band is called the Intertropical Convergence Zone (ITCZ), which I’ve discussed before, and is the pillar of global atmospheric circulation.

Rainbow in the Marshall Islands
A developing storm brings a rainbow to the Marshall Islands. (photo by Diane Thompson)

The seasonal movement of the ITCZ over the Marshalls provides the country’s drinking water.  Needless to say, it’s pretty important; when it’s too far from the Marshalls, wells and catchments run dry.  However, it’s hard to simulate the ITCZ accurately in climate models, which makes its future behavior difficult to predict.  As a first step, though, we can look at how its location and strength has changed in the past.

Unfortunately, I haven’t found many good visualizations of the ITCZ through time, so I made my own.  This video shows monthly precipitation from 1979 through 2016, from NOAA’s Global Precipitation Climatology Project (GPCP).

Brief rant: Mapping the Pacific is hell.  Most files and programs pretend that the world ends at the International Date Line, which runs smack-dab down the middle of the Pacific.  So, when I tried to map the Pacific Islands, everything beyond the date line simply didn’t exist, and it took nearly a week to fix it.  The result, though, is worth it, because I can finally generate plots that show the outlines of the oft-ignored Pacific Islands and reefs!

What climate patterns can we identify here?

Continue reading Raindrops keep falling on my head

Global Sea Level Rise

Global average sea level since 1880 (compared to 1995).  Data composited from CSIRO (1880-2013) and satellite observations (1993-present).

Even though the rate changes, sea level is clearly rising.  It’s already about a foot higher than in 1880, and is expected to rise by up to a meter by the end of the century (if melting of polar ice sheets accelerates, this number could be much higher).  This figure was inspired by Dr. Ed Hawkins’ now-famous climate spiral, and took advice from this talk on making beautiful figures.

This is What Sea Level Rise Looks Like

Long Wharf king tide

Boston’s Long Wharf is flooding.

This flooding is part of a “king tide” – a tide higher than all others.  When the sun, moon, and Earth are in alignment, and close to each other, the tides will have especially high amplitudes – that is, the highest high tides and the lowest low tides.  If you want a general introduction to how tides work, check out this Crash Course Astronomy video.

So, with this week’s supermoon, the tides are especially strong – some of the strongest of the year.  During high tide, salt water is sneaking through storm drains and spilling over seawalls all along our coasts.

This kind of flooding is often called “nuisance flooding” or “clear-day flooding” because it isn’t associated with storm surges or winds.  But let’s be clear: this “nuisance flooding” is exactly how sea level rise works.

What’s more, these floods will become more common as sea level rises.

Continue reading This is What Sea Level Rise Looks Like

Massachusetts Oceanography and the Impacts of Drought

In the deserts of Arizona, I always talked about oceans the same way that we might talk about unicorns: It’d be nice to see one, but good luck with that.

Going to grad school in New England means I finally have an ocean within walking distance of my office.  So, between SCUBA and oceanography courses, I’m taking every chance to learn more about the Atlantic.

Boston University has partnered with the Stellwagen Bank Marine Sanctuary to use the Research Vessel Auk to collect seawater and plankton data around the Sanctuary (a rectangular area stretching roughly from Cape Cod to Cape Ann).  I know the phrase “collect data” can sound inherently boring, so here’s a whale picture to convince you that it’s actually fascinating:

We had a "whale" of a time watching these humpbacks feeding!
We had a “whale” of a time watching humpbacks feeding!  There are actually three whales in this picture.  Together, they dive, blow a wide ring of bubbles to corral fish, then emerge from the water with their mouths agape, netting as many fish as possible.  I’ve heard that this behavior, called “bubble netting”, wasn’t seen in Stellwagen Bank until a few years ago.  This implies that bubble netting is a behavior these whales picked up from other whales, like a kind of cultural exchange.  Basically, whales are smart.

Continue reading Massachusetts Oceanography and the Impacts of Drought

Exploring the mysterious island: field work in the Marshall Islands

I was (and am) an unabashed science fiction fan.  As a kid, one of my favorite books was Jules Verne’s The Mysterious Island, which tells the tale of a motley group of Civil War survivors stranded on an unexplored Pacific Island.  It’s not your typical Cast Away story of a bitter struggle against the elements.  Instead, the novel is partly a how-to book: by combining the skills of an engineer, a freedman, two sailors, and a journalist, the group concocts nitroglycerin, erects a telegraph, and even builds a ship!

I promise, the rest of the book isn’t as ominous as this cover suggests. (from Wikimedia Commons)

In other words, I’ve always been interested in how people can turn an inhospitable island into a home.  So, like the castaways in The Mysterious Island, I’ve found my way to the scattered islands of the Pacific.

Continue reading Exploring the mysterious island: field work in the Marshall Islands

The Heat is On: El Niño Heralds the Future of the World’s Corals

These corals in Kealakekua Bay, Hawai'i, aren't doing so well, and in coming years, more of the world's reefs may look this way.
These corals in Kealakekua Bay, Hawai’i, aren’t doing so well, and in coming years, more of the world’s reefs may look this way.

Last January was the hottest one on record, chasing the heels of the hottest year on record. This heat is impacting our coral reefs—the lifeblood of our oceans—and despite the promises of geoengineering and local conservation efforts, there’s no quick fix for these impacts.

These shattered records result from climate change fingerprinted onto a powerful El Niño, which warms the tropical Pacific Ocean and releases an unusual amount of heat into the atmosphere. This El Niño has changed patterns of temperature, drought, and floods across the world. It’s even been linked to the spread of mosquitoes that carry the Zika virus.

But, one of the biggest and most far-reaching impacts of El Niño lurks beneath the surface of our oceans: coral bleaching.

Coral bleaching often results from extreme ocean temperatures. Tiny algae live inside the tissue of the coral itself, generating nutrients from sunlight for its host. When the coral is “stressed” by high temperatures, it expels these algae, which turns the coral bone-white. While a coral can survive this bleaching for a few months, it’s starving, deprived of nutrients provided by its algae.

A bleached coral is more prone to disease and death. For example, heating of the tropical Atlantic in 2005 led to a bleaching event that killed nearly half of the Caribbean’s corals. Reefs are the foundation for healthy marine ecosystems. For example, they provide nurseries and breeding grounds for a quarter of the ocean’s fish, so the loss of these corals can decimate marine biodiversity.

Coral bleaching impacts humans as well. Reefs attract tourists, provide livelihoods for fishermen, and form living sea walls against erosion, generating an estimated $30 billion per year.

They’re also the sole subsistence for hundreds of thousands of Pacific Islanders. In the Marshall Islands of the western Pacific, reefs provide not only food, but also supply the coral sand that forms the islands themselves. Without its reefs, the entire nation will literally disappear. Researchers on a recent ecological survey of the Marshalls discovered the worst bleaching of its corals ever seen. It’s a foreboding finding for this fragile nation.

In short, the stakes are high.

The National Oceanic and Atmospheric Administration (NOAA) uses satellite measurements of ocean temperatures to predict bleaching. In 2014, it began monitoring an outbreak that escalated to the third-ever global coral bleaching event in October 2015. Reefs from Australia to Hawai’i to Florida turned white. El Niño is worsening and prolonging this problem. In fact, NOAA scientists just announced that this bleaching event is the longest one ever observed.

In the coming decades, ocean warming will usher in frequent, longer, and more severe bleaching, increasing coral death rates worldwide. This trend has led the Australian government to declare climate change the single biggest threat to its iconic Great Barrier Reef. That assessment likely holds for reefs worldwide.

So, what can we do to conserve our corals?

First, we have to recognize that temperature is not a reef’s only stressor. Runoff, chemical pollution, and invasive species can all decrease a coral’s ability to beat the heat. Maintaining clean oceans and limiting the spread of invasive species can encourage the growth of healthy corals. That’s been the management policy for the Great Barrier Reef, and it could work elsewhere.

While these actions could buy time for our reefs, they’re stop-gap solutions at best. Any attempt to minimize global coral bleaching has to address climate change. Because carbon dioxide also acidifies our oceans, solutions that cool the planet without cutting our carbon emissions won’t spare our reefs.

The Paris Climate Agreement is a step in the right direction. Now, it’s up to each nation to fulfill its commitment. As citizens, we must hold our government accountable to its promise to curb carbon emissions. It’s easy to fall into an “out of sight, out of mind” mentality, but ignoring the issue will only worsen it.

The solution won’t be easy, but without it, the future of our coral reefs will be far less colorful.

El Niño, just in time for Christmas!

Global SSTA's
How unusual are December’s ocean temperatures? The eastern equatorial Pacific is unusually hot (yellow/red), showing the signature of an El Niño ( sea surface temperature anomalies, 12/23/15).

Fishermen off the coast of Peru have long noticed a warm current that appeared in the Pacific around Christmastime, and dubbed this phenomenon “El Niño,” after the young Christ.  Today, “El Niño” refers to the pattern of unusually warm waters in the equatorial Pacific, which appears every 2-7 years and peaks in December.

Now, Christmas is almost upon us, and this year’s El Niño is expected to peak soon.

This year’s El Niño began with a weak start.  The atypical pattern of surface temperatures that began in March 2015 earned it the moniker of “El Weirdo.” It’s always difficult to predict an El Niño more than a few months in advance, so researchers were unsure that this El Niño would last longer than a few weeks.

Surprise!  Since then, the eastern Pacific has warmed even further, turning the 2015 El Niño into one of the strongest on record, second only to the one in 1997.  You can explore current global ocean temperature anomalies at one of my favorite sites, here.

How does 2015's El Niño compare to previous events? The most recent data (September-November average) show that 2015's El Niño is the second strongest since 1950. (Oceanic Nino Index, SSTA in 5N-5S, 120-170W, accessed 12/23/15).
How does 2015’s El Niño compare to previous events? The most recent data suggest that 2015’s El Niño could be the second strongest since 1950. (September-November average, Oceanic Nino Index, SSTA in 5N-5S, 120-170W, accessed 12/23/15).

El Niño is changing temperature and precipitation patterns worldwide.  In the next few months, El Niño is predicted to make the northern U.S. unusually warm (as my dad put it, “El Niño is bad news for northeast skiers”) and bring additional rainfall to the southern states.  Check out the predicted impacts for your region here.

But El Niño impacts aren’t restricted to the U.S.  In October, scientists at the National Oceanic and Atmospheric Administration declared the beginning of a global coral bleaching event, the third on record.  Warm waters can stress corals, forcing out their symbiotic algae, bleaching the corals and effectively starving them.  In 1997-1998, the largest El Niño on record caused a bleaching event that killed 16 percent of the world’s coral reefs.  A similar event is now underway.

El Niño also strengthens the Pacific hurricane season, and weakens the Atlantic one.  Since Pacific westerlies weaken during El Niños, large storms can form without being torn apart by strong winds.  October’s Hurricane Patricia, the strongest storm ever measured, probably formed because of unusually warm waters and weaker westerlies caused by El Niño.

That’s just the tip of the iceberg.  There are whole books on the impacts of El Niño. Hopefully, though, this post has convinced you of three things:

El Niño is big, it’s important, and it’s happening now.

Toying around with Ocean Currents screenshot
If you drop a flotilla of duckies near San Diego, most of them end up in the North Pacific Gyre, a.k.a. the Great Pacific Garbage Patch.

A few years ago, I joined a clean-up at Kamilo Beach on the Big Island of Hawai’i.  I noted the things we found:

  • fishing gear
  • whale vertebrae
  • a glass float
  • hagfish traps
  • shoes
  • possible tsunami debris from Japan
  • top of a toy rocket
  • action figures
  • wheels from a toy car
  • toothbrushes
  • lighters

That list has been stashed on my phone for two years.


Because each item tells a story, from forgotten toys to mislaid fishing nets.  Each piece of flotsam was made, lost, and carried across the Pacific to the world’s most isolated island chain.

I wanted to learn that story.  And, if you’ve ever lost a flip-flop at a beach, or written a message in a bottle, you might want to learn where it went.

You can find out at one of my favorite sites, Adrift. Continue reading Toying around with Ocean Currents


Burned stump at Tidbinbilla Nature ReserveMy time in Australia’s dry tropics amounts to three words: Fires. Fires everywhere.  I’m sure the region has a certain amount of paranoia about this year’s growing El Nino, which brings droughts to the region, and the increased threat of wildfires.  But, drought or no drought, controlled burns have been a traditional part of Australia’s ecological management for 40,000 years.

Continue reading Pyromania